وبلاگ دیجی پروژه

پروژه و ترجمه های هوش مصنوعی

وبلاگ دیجی پروژه

پروژه و ترجمه های هوش مصنوعی

وبلاگ دیجی پروژه

دیجی پروژه را در کانال تلگرام دیجی پروژه دنبال نمایید
https://telegram.me/DigiProjects

آخرین نظرات

۲۲ مطلب با موضوع «پردازش تصویر» ثبت شده است

۲۶
اسفند

تشخیص حالت چهره بر اساس الگوهای باینری محلی: یک مطالعه‌ی جامع

Facial expression recognition based on Local Binary Patterns

A comprehensive study


فرمت ترجمه مقاله : word - قابل ویرایش

تعداد صفحات ترجمه مقاله : 30 صفحه

دانلود اصل مقاله - رایگان

قیمت : 20000 تومان


چکیده مقاله

تحلیل اتوماتیک حالت چهره، یک مسئله‌ی جالب و چالش‌برانگیز است و روی کاربردهای مهم در بسیاری از نواحی مانند تعامل انسان کامپیوتر و انیمیشن مبتنی بر داده، تأثیر گذار است. استخراج یک نمایش مؤثر چهره از تصاویر اصلی صورت، یک گام حیاتی برای تشخیص موفق حالت چهره است. در این مقاله، ما به طور تجربی، نمایش چهره را بر اساس ویژگی‌های محلی آماری، الگوهای باینری محلی، برای تشخیص مستقل از شخص حالت چهره ارزیابی می‌کنیم. روش‌های مختلف یادگیری ماشین روی پایگاه‌داده‌های متعدد بررسی شده‌اند. آزمایشات وسیعی نشان می‌دهد که ویژگی‌های LBP برای تشخیص حالت چهره، مؤثر و کاراست. ما LBP تقویت شده را نیز فرمول سازی می‌کنیم تا متمایزترین ویژگی‌های LBP را استخراج کنیم و بهترین کارایی تشخیص با استفاده از طبقه‌بندهای ماشین بردار پشتیبان با ویژگی‌های LBP تقویت شده بدست می‌آید. به علاوه، ما ویژگی‌های LBP را برای تشخیص حالت چهره ا وضوح پایین بررسی می‌کنیم که یک مسئله‌ی حیاتی است اما به ندرت در کارهای موجود به آن پرداخته شده است. ما در آزمایشات مشاهده می‌کنیم که ویژگی‌های LBP به طور ثابت و محکم و در محدوده‌ی وضوح پایین تصاویر چهره کار می‌کنند و منجر به کارایی خوبی در دنباله‌های ویدئویی با وضوح پایین فشرده شده و گرفته شده در محیط‌های جهان واقعی می‌شوند.


۲۶
اسفند

فرمت ترجمه مقاله : word - قابل ویرایش

تعداد صفحات ترجمه مقاله : 36 صفحه

دانلود اصل مقاله

قیمت : ۲۵۰۰۰ تومان


چکیده مقاله

تحقیقات در زمینه‌ی تشخیص حالت چهره، در تصاویر چهره تنها به صورت دید روبرو انجام شده است. تلاش‌هایی برای تولید طبقه‌بندهای حالت چهره‌های متغیر انجام شده است. با این حال، اکثر این تلاش‌ها تنها تغییرات افقی تا 45 درجه را در نظر گرفته‌اند که همه‌ی چهره مشخص است. کارهای اندکی برای بررسی پتانسیل ذاتی حالات مختلف برای تشخیص حالت چهره انجام شده است. این امر عمدتاً به دلیل پایگاه داده‌های موجود است که تنها تصاویری از چهره از دید روبرو را می‌اندازند. پایگاه داده‌های اخیر BU3DFE و multi-pie تحقیقات تجربی تشخیص حالت چهره برای زوایای دید مختلف را اجازه می‌دهند. یک روش دو مرحله‌ای برای طبقه‌بندی حالت و طبقه‌بندی حالت چهره مستقل از دید در نظر گرفته شده است. الگوهای باینری محلی (LBP) و تغییرات LBPها به عنوان توصیفگرهای بافتی بررسی می‌شود. این ویژگی‌ها، بررسی تأثیر موقعیت و تحلیل چند وضوحی برای تشخیص حالت چهره با چندین دید را اجازه می‌دهند. تأثیر حالت روی حالات مختلف چهره بررسی شده است. عوامل دیگر شامل وضوح و ایجاد بردارهای ویژگی محلی و سراسری بررسی شده است. از یک روش مبتنی بر ظاهر با تقسیم تصویر به زیر بلوک‌های قرار گرفته در چهره استفاده شده است. بردارهای ویژگی شامل هیستوگرام‌های الحاقی ویژگی ایجاد شده از هر زیر بلوک است. از ماشین‌های بردار پشتیبان چند کلاسی، برای یادگیری حالت و طبقه‌بندهای حالت چهره‌ی مستقل از موقعیت استفاده شده است.