وبلاگ دیجی پروژه

پروژه و ترجمه های هوش مصنوعی

وبلاگ دیجی پروژه

پروژه و ترجمه های هوش مصنوعی

وبلاگ دیجی پروژه

دیجی پروژه را در کانال تلگرام دیجی پروژه دنبال نمایید
https://telegram.me/DigiProjects

آخرین نظرات

۳ مطلب با موضوع «یادگیری ماشین» ثبت شده است

۲۱
بهمن

لازم به ذکر است که این پروژه با استفاده از نرم افزار متلب پیاده سازی شده است

و جهت اجرا آن ، نیاز است که ابتدا Matlab را نصب کرده باشید.

همراه این پروژه ، یک فایل مستندات با فرمت PDF وجود دارد

که توضیحات لازم را در رابطه با کد نویسی پروژه ارائه داده است و جهت آشنایی بیشتر ، میتوانید آن را مطالعه بفرمایید

دانلود

۲۹
دی

عنوان پایان نامه : داده کاوی، مفاهیم و کاربرد

قالب بندی : Word

قیمت : رایگان

شرح مختصر : امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این  سیستم ها ، نیاز به ابزاری است تا بتوان داده های ذخیره شده را پردازش کردواطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد . با استفاده از پرسش های ساده در SQL و ابزارهای گوناگون گزارش گیری معمولی ، می توان اطلاعاتی را در اختیار کاربران قرار داد تا بتوانند به نتیجه گیری در مورد داده ها و روابط منطقی میان آنها بپردازند اما وقتی که حجم داده ها بالا باشد ، کاربران هر چند زبر دست و با تجربه باشند نمی توانند الگوهای مفید را در میان حجم انبوه داده ها تشخیص دهند و یا اگر قادر به این کار هم با شند ، هزینه عملیات از نظر نیروی انسانی و مادی بسیار بالا است . از سوی دیگر کاربران معمولا فرضیه ای را مطرح می کنند و سپس بر اساس گزارشات مشاهده شده به اثبات یا رد فرضیه می پردازند ، در حالی که امروزه نیاز به روشهایی است که اصطلاحا به کشف دانش بپردازند یعنی با کمترین دخالت کاربر و به صورت خودکار الگوها و رابطه های منطقی را بیان نمایند . داده کاوی یکی از مهمترین این روشها است که به وسیله آن الگوهای مفید در داده ها با حداقل دخالت کاربران شناخته می شوند و اطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس آنها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند . در داده کاوی از بخشی از علم آمار به نام تحلیل اکتشافی داده ها استفاده می شود که در آن بر کشف اطلاعات نهفته و ناشناخته از درون حجم انبوه داده ها تاکید می شود . علاوه بر این داده کاوی با هوش مصنوعی و یادگیری ماشین نیز ارتباط تنگاتنگی دارد ، بنابراین می توان گفت در داده کاوی تئوریهای پایگاه داده ها ، هوش مصنوعی ، یادگیری ماشین و علم آمار را در هم می آمیزند تا زمینه کاربردی فراهم شود . باید توجه داشت که اصطلاح داده کاوی زمانی به کار برده می شود که با حجم بزرگی از داده ها ، در حد مگا یا ترابایت ، مواجه باشیم . در تمامی منابع داده کاوی بر این مطلب تاکید شده است . هر چه حجم داده ها بیشتر و روابط میان آنها پیچیده تر باشد دسترسی به اطلاعات نهفته در میان داده ها مشکلتر می شود و نقش داده کاوی به عنوان یکی از روشهای کشف دانش ، روشن تر می گردد .

دانلود پایان نامه

با تشکر از جناب آقای ابراهیم هژبر

منبع : پروژه دات کام




۲۹
اسفند

یادگیری آنلاین بر پایه الگوریتم بوستینگ در کاربرد تشخیص چهره

Boosted Online Learning for Face Recognition

این پروژه پیاده سازی مقاله الگوریتم Boosted Online Learning for Face Recognition بوده که اصل مقاله به زبان اصلی را می توانید بصورت رایگان از طریق لینک ذیل دانلود نمایید.

دانلود اصل مقاله

این پروزه شامل کد برنامه به زبان متلب (کد برنامه حدود 80 در صد متناسب با مقاله است) و یک ترجمه بسیار عالی از خود مقاله چه از نظر مفهومی و چه از نظر نگارشی در قالب فایل word (قابل ویرایش) و همچنین گزارش مختصری در مورد کد برنامه در قالب فایل PDF می باشد.

قابل ذکر است در پیاده سازی این مقاله از پایگاه داده Jensen که شامل 15000 نمونه تصویر چهره از غیره چهره می باشد استفاده نمودیم، اندازه تصاویر در ابعاد 24*24 می باشد و بدلیل حجم زیاد دیتابس، دیتابس بصورت یک mat فایل در پوشه برنامه قرار گرفته است. این برنامه داری واسط گرافیکی بصورت شکل ذیل می باشد ، خروجی که این پیاده سازی دارد ارائه تشخیص تک به تک تصاویر با نمایش عدد 1 (در صورت چهره بودن) و -1(در صورت غیره چهره بودن) ، درصد دقت تشخیص و همچنین زمان اجرای برنامه را بعنوان خروجی برمیگرداند.

برای ورودی برنامه می توانید تعداد داده ها و همچنین درصد داده های ترین و تست رو مشخص کنید.

دریافت کد برنامه و گزارش برنامه ( ایمیل خود را با دقت وارد نمایید چون بعد از خرید، فایل به ادرس ایمیل ذکر شده ارسال خواهد شد)

قیمت : 20000 تومان

چکیده مقاله :

برنامه های کاربردی تشخیص چهره از سه مشکل معمول برخوردار هستند: 1-کاهش مجموعه آموزشی، 2- اطلاعاتی که در فضایی با ابعاد زیاد نهفته است و 3- نیازی که به شناسایی چهره افراد جدید می باشد. در مطالعات اخیر، دسته بندی کننده های چهره به منظور پوشش دادن چهره جدید در مدل، این مسئله را با تکنیکهای استخراج ویژگی آنلاین حل نموده اند.

در این مقاله الگوریتم بوستینگ آنلاین معرفی شده است: که یک روش دسته بندی کنندۀ تشخیص چهره بر پایه بوستینگ را توسعه داده است، بدین صورت که با اضافه شدن یک کلاس جدید، از نیاز به آموزش مجدد دسته بندی کننده در هر بار اضافه شدن فرد جدید به سیستم، جلوگیری می کند. دسته بندی کننده با استفاده از اصل یادگیری چند وظیفه ای آموزش داده می شود. کلاسهای جدیدی که به سیستم وارد می شوند، از مزایای ساختار آموزش دیده قبلی استفاده خواهند کرد، و اضافه شدن این کلاس های جدید، نیازی به محاسبات تکراری نخواهد داشت.