وبلاگ دیجی پروژه

پروژه و ترجمه های هوش مصنوعی

وبلاگ دیجی پروژه

پروژه و ترجمه های هوش مصنوعی

وبلاگ دیجی پروژه

دیجی پروژه را در کانال تلگرام دیجی پروژه دنبال نمایید
https://telegram.me/DigiProjects

آخرین نظرات

 A Dynamically Configurable Coprocessor for Convolutional Neural Networks

پردازنده کمکی پویای قابل تنظیم برای شبکه های عصبی کانولوشن

فرمت ترجمه مقاله : word – قابل ویرایش

تعداد صفحات ترجمه مقاله به همراه پاسخ به سوالات : 47 صفحه

رعایت تمام قوانین نگارشی و دارای فهرست اشکال،جداول و محتوا

سال چاپ مقاله : 2013

دانلود اصل مقاله – رایگان

قیمت : 29000 تومان

این فایل علاوه بر ترجمه به سوالات زیر در باب مقاله مذکور پاسخ میدهید:

۸-۱ مقاله دقیقا چی مساله ای را میخواهد حل کند؟

۸-۲ چه جنبه این مساله جنبه مهمی است؟ چرا؟

۸-۳ راه حل های قبلی چه هستند؟

۸-۴ مشکلات راه حلهای قبلی چیست و چرا ناکافی هستند؟

۸-۵ راه حل پشنهادی چیست؟

۸-۶ چگونه راه حل  طراحی و پیاده سازی شده است؟

۸-۷ چرا این راه حل کار خواهد کرد و بهتر از راه حل های قبلی خواهد بود؟

۸-۸ فرضیات بکار رفته چه هستند؟ این فرضیات چقدر واقع گرایانه هستند؟

۸-۹ روش پشنهادی چگونه ارزیابی شده است؟

۸-۱۰ ارزش راه حل چگونه اثبات شده است؟

۸-۱۱ نتایج اصلی مقاله چه هستند؟

۸-۱۲ نتایج چقدر نسبت به فرضیات حساس هستند؟

۸-۱۳ روندهای آتی این کار تحقیقاتی از نظر نویسندگان چیست؟

۸-۱۴ در نگاه کلی، این مقاله چه چیزی به ما میدهد؟

۸-۱۵ نقاط قوت کار از نظر شما کدامند؟در ایده اولیه، در راه حل، و در ارزیابی؟

۸-۱۶ نقاط ضعف کار از نظر شما کدامند؟

۸-۱۷ شما چه جهت هایی برای ادامه کار می بینید؟

۸-۱۸ چه سوالاتی در مورد مقاله به ذهن شما می آید؟

چکیده

برنامه ­های کاربردی شبکه­های عصبی کانولوشن (CNN) برنامه ­هایی هستند که از شناسایی و استدلال (مانند شناسایی دست خط، شناسایی حالت چهره و نظارت فیلم­ها) تا برنامه­ های هوشمند متنی مثل تحلیل فنی شماتیک و برنامه ­های پردازش زبان طبیعی را شامل می­شوند. دو مشاهده کلیدی باعث ساختن طرحی جدید برای CNN شد؛ اول، بارِ کاری CNN، مخلوطی وسیع از سه نوع موازی­سازی را ارائه داده است: موازی­ سازی درون یک عملیات کانولوشن، موازی­ سازی در داخل-خروجی که در آن چندین منابع ورودی (ویژگی­ها) ترکیب می­شوند تا یک خروجی واحد بسازند، و موازی ­سازی بین-خروجی که در آن چندین خروجی (ویژگی) مستقل، همزمان محاسبه می­شوند. بارهای کاری در برنامه ­های مختلف CNN و لایه ­های متفاوت CNN، تفاوت چشم­گیری دارند. دوما، تعداد المان­های محاسبه در یک معماری، نسبت به پهنای باند خارج از حافظه (pin-count) با نسبت بسیار بیشتری (همانند قانون مور[1]) افزایش می یابد. بر اساس این دو مشاهده، ما نشان می­دهیم که در ازای مقدار مشخصی المان محاسبه و پهنای باند خارج از حافظه، یک معماری سخت افزاری جدید CNN که برای رسیدن به مقدار مشخصی از موازی­سازی در یک بارِکاری مشخص، سخت افزار را به طور پویا و درجا تنظیم می­کند و بهترین توان عملیاتی را می­دهد. کامپایلر CNN ما، مشخصات خلاصه شده شبکه را به طور خودکار به یک ریزبرنامه (دسته­ای از دستورات سطح پایین VLIW) ترجمه می­کند که توسط یک Coprocessor، برنامه ­ریزی، زمان­بندی و اجرا می­شود. به نسبت یک 4.3GHz quad-core dual socket Intel Zenon، 1.35 GHz C910 GPU و یک 1200MHz FPGA، معماری قابل تنظیم 120 مگاهرتز، حدود 4 تا 8 برابر سریعتر است. این اولین معماری CNN است که توانسته شناسایی اشیای زیادی را در یک فیلم برداری (25 تا30 فریم بر ثانیه) به طور همزمان انجام دهد.

گروه­ها و توضیح دهنده­های موضوعات

c.1.3 (حالت های دیگر معماری): معماری های سازگار شونده، شبکه های عصبی، پردازنده های پاپ لاین[2]

واژه­های عمومی

طرح، آزمایش، کارایی

کلمه­های کلیدی

شبکه های عصبی کانولوشن، تنظیم دوباره پویا، معماری رایانه موازی

[1] Moore

[2] Pipeline processors.

نظرات  (۰)

هیچ نظری هنوز ثبت نشده است

ارسال نظر

ارسال نظر آزاد است، اما اگر قبلا در بیان ثبت نام کرده اید می توانید ابتدا وارد شوید.
شما میتوانید از این تگهای html استفاده کنید:
<b> یا <strong>، <em> یا <i>، <u>، <strike> یا <s>، <sup>، <sub>، <blockquote>، <code>، <pre>، <hr>، <br>، <p>، <a href="" title="">، <span style="">، <div align="">
تجدید کد امنیتی